Rabu, 22 Juli 2009

Metabolisme, Peranan Enzim dan Respirasi

Metabolisme, Peranan Enzim dan Respirasi





Metabolisme adalah proses-proses kimia yang terjadi di dalam tubuh makhluk hidup/sel. Metabolisme disebut juga reaksi enzimatis, karena metabolisme terjadi selalu menggunakan katalisator enzim. Reaksi-reaksi tersebut adalah dasar dari kehidupan, yang membuat sel dapat tumbuh dan bereproduksi, mempertahankan strukturnya, dan merespon lingkungannya. Secara keseluruhan, metabolisme bertanggung jawab terhadap pengaturan materi dan sumber energi dari sel. Tugas metabolisme inilah yang menjadikan metabolisme suatu reaksi yang sangat penting bagi kelangsungan hidup makhluk hidup.

Tumbuhan menghasilkan metabolit sekunder yang berfungsi untuk melindungi tumbuhan tersebut dari serangga, bakteri, jamur, dan jenis pathogen lainnya.

Secara umum, metabolisme terdiri atas 2 proses yaitu anabolisme (reaksi penyusunan) dan katabolisme (reaksi pemecahan).

Anabolisme
Anabolisme adalah suatu peristiwa penyusunan senyawa kompleks dari senyawa sederhana, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.
Contoh Fotosintesis

Katabolisme
Katabolisme adalah reaksi pemecahan / pembongkaran senyawa kimia kompleks yang mengandung energi tinggi menjadi senyawa sederhana yang mengandung energi lebih rendah. Tujuan utama katabolisme adalah untuk membebaskan energi yang terkandung di dalam senyawa sumber.

  • Respirasi aerob

Berlangsung dalam 3 tahapan yaitu : glikolisis, siklus kreb dan fosforilasi transport electron. Memerlukan Oksigen dan menghasilkan 36 ATP.
C6H12O6 + 6O6 → 6H2O+ 6CO2+36 ATP

  • Respirasi anaerob

Tidak memerlukan oksigen dan disebut juga dengan Fermentasi. Ada 2 jenis Fermentasi yaitu fermentasi alcohol dan fermentasi laktat.

C6H12O6 → 6CO2+ etanol +2 ATP

ENZIM

A. SEJARAH TENTANG ENZIM

Pada awalnya, enzim dikenal sebagai protein oleh Sumner ( 1926 ) yang telah berhasil mengisolasi urease dari tumbuhan kara pedang. Urease adalah enzimysng dapat menguraikan urea menjadi CO2 dan NH3. Beberapa tahun kemudian Northrop dan Kunits dapat mengisolasi pepsin, tripsin, dan kinotripsin. Kemudian makin banyak enzim yang telah dapat diisolasi dan telah dibuktikan bahwa enzim tersebut ialah protein.

Dari hasil penelitian para ahli biokim ternyata banyak enzim mempunyai gugus bukan protein, jadi termasuk golongan protein majemuk. Gugus bukan protein ini disebut dengan kofaktor ada yang terikat kuat pada protein dan ada pula yang tidak terikat kuat oleh protein.. Gugus terikat kuat pada bagian protein artinya sukar terurai dalam larutan yang disebut dengan Prostetik, sedang yang tidak begitu terikat kuat ( mudah dipisahkan secara dialisis ) disebut dengan Koenzim. Keduanya ini dapat memungkinkan enzim bekerja terhadap substrat.

B. PENGERTIAN ENZIM

ü Enzim ialah suatu zat yang dapat mempercepat laju reaksi dan ikut beraksi didalamnya sedang pada saat akhir proses enzim akan melepaskan diri seolah – olah tidak ikut bereaksi dalam proses tersebut.

ü Enzim merupakan reaksi atau proses kimia yang berlangsung dengan baik dalam tubuh makhluk hidup karena adanya katalis yang mampu mempercepat reaksi. Koenzim mudah dipisahkan dengan proses dialisis.

ü Enzim berperan secara lebih spesifik dalam hal menentukan reaksi mana yang akan dipacu dibandingkan dengan katalisator anorganik sehingga ribuan reaksi dapat berlangsung dengan tidak menghasilkan produk sampingan yang beracun.

ü Enzim terdiri dari apoenzim dan gugus prostetik. Apoenzim adalah bagian enzim yang tersusun atas protein. Gugus prostetik adalah bagian enzim yang tidak tersusun atas protein. Gugus prostetik dapat dikelompokkan menjadi dua yaitu koenzim (tersusun dari bahan organik) dan kofaktor (tersusun dari bahan anorganik).

B. PERBEDAAN ENZIN DENGAN KATALISATOR

ü Katalisator bersifat umum, hanya berfungsi untuk mempercepat reaksi yang dapat digunakan berulang - ulang ( satu katalisator mampu mereaksikan 2 atau 3 bahkan lebih reaksi)

ü Enzim bersifat lebih spesifik hanya digunakan untuk satu reaksi saja ( satu enzim hanya untuk satu reaksi)

C. METABOLISME TUMBUHAN

Tumbuhan juga mengahasilkan senyawa metabolit sekunder yang berfungsi untuk melindungi tumbuhan dari serangan serangga, bakteri, jamur dan jenis patogen lainnya serta tumbuhan itu mampu menghasilkan vitamin untuk kepentingan tumbuhan itu sendiri serta hormon – hormon yang merupakan sarana bagi tumbuhan untuk berkomunikasi antara organnya atau jaringannya dalam mengendalikan dan mengkoordinasi pertumbuhan dan perkembangannya.

Dalam tumbuhan pun terdapat proses metabolisme tumbuhan yang terdiri dari anabolisme ( pembentkan senyawa yang lebih besar dari molekul – molekul yang lebih kecil, molekul ini terdiri dari pati, selulose, protein, lemak dan asam lemak. Prioses ini membutuhkan energi).Sedang katabolisme merupakan senyawa dengan molekul yang besar membentuk senyawa – senyawa dengan molekul yang lebih kecil dan menghasilkan energi.

Sel dalam tubuh tumbuhan mampu mengatur lintasan – lintasan metabolik yang dikendalikannnya agar terjadi dan dapat mengatur kecepatan reaksi tersebut dengan cara memproduksi suatu katalisator dalam jumlah yang sesuai dan tepat pada saat dibutuhkan. Katalisator inilah yang disebut denagn enzim yang mampu mempercepat laju reaksi yang berkisar antara 108 sampai 1020.

E. SIFAT – SIFAT ENZIM

Sifat-sifat enzim adalah sebagai berikut:

  • Biokatalisator. Enzim mempercepat laju reaksi, tetapi tidak ikut bereaksi.
  • Termolabil. Enzim mudah rusak bila dipanaskan sampai dengan suhu tertentu.
  • Merupakan senyawa protein
  • Bekerja secara spesifik.Satu jenis enzim bekerja secara khusus hanya pada satu jenis substrat. Misalnya enzim katalase menguraikan Hidrogen peroksida (H2O2) menjadi air (H2O) dan oksigen (O2), sedangkan enzim lipase menguraikan lemak dan air menjadi gliserol dan asam lemak.
  • Enzim dibentuk dalam protoplasma sel
  • Enzim beraktifitas di dalam sel tempat sintesisnya (disebut endoenzim) maupun di tempat yang lain diluar tempat sintesisnya (disebut eksoenzim)
  • Sebagian besar enzim bersifat endoenzim
  • Enzim bersifat koloid, luas permukaan besar, bersifat hidrofil
  • Dapat bereaksi dengan senyawa asam maupun basa, kation maupun anion
  • Enzim tidak ikut terlibat dalam reaksi, struktur enzim tetap baik sebelum maupun setelah reaksi berlangsung
  • Enzim sangat peka terhadap faktor-faktor yang menyebabkan denaturasi protein misalnya suhu, pH dll
  • Enzim dapat dipacu maupun dihambat aktifitasnya
  • Enzim bermolekul besar

F. SUSUNAN ENZIM
Secara kimia, enzim yang lengkap (holoenzim) tersusun atas 2 bagian yaitu:

  1. Bagian protein disebut Apoenzim yang bersifat labil ( mudah berubah) yang dipengaruhi oleh suhu dan keasaman.
  2. Bagian yang bukan protein yang disebut dengan gugus prostetik ( gugusan aktif) yang berasal dari kofaktor.


G. KOMPOSISI KIMIA DAN STRUKTUR 3-DIMENSI ENZIM
Setiap enzim terbentuk dari molekul protein sebagai komponen utama penyusunnya dan bebrapa enzim hanya terbentuk dari molekul protein dengan tanpa adanya penambahan komponen lain. Protein lainnya seperti Sitokrom yang membawa elektron pada fotosintesis dan respirasi tidak pula dapat digolongkan sebagai enzim. Selain itu, protein yang terdapat dalam biji juga lebih berperan sebagai bahan cadangan untuk digunakan dalam proses perkecambahan biji.

Protein hanya terbentuk dari satu ikatan poloipeptida yang menggumpal membentuk suatu struktur yang bulat atau sperikal, contohnya ribonuklease. Setiap rantai polipeptida atau molekul protein secara sponstan akan membentuk konfigurasi dengan energi bebas terendah.

Dalam sitisol sel, asam amino lebih bersifat hidrofobik yang akan mengumpul pada bagian dalam, sedang pada permukaan molekul protein atau enzim asan amino bersifat hidrofilik.

H. KOMPERTEMENTASI ENZIM
Enzim – enzim yang berperan untuk fotosintesis terdapat pada kloroplas. Enzim yang berperan penting dalam respirasi aerobik terdapat pada mitokondria, sedang enzim respirasi lainnya terdapat dalam sitosol.

Kompertemenisasi enzi akan meningkat edisiensi banyak proses yang beralngsung di dalam sel, karena :

  1. Reaktan tersedia pada tempat dimana enzim tersedia.
  2. Senyawa akan dikonversi dikirim ke arah enzim yang berperan untuk menghasilakn produk sesuai yang dikehendaki dan tidak disimpangkan pada lintasan yang lain. Akan tetapi kompartemenisasi ini tidak bersifat absolut.

I. FUNGSI SPESIFIK, NOMENKLATUR dan PENGGOLONGAN ENZIM.
a. Fungsi Enzim
Yaitu sebagai katalis untuk proses biokimia yang terjadi dalam sel maupun di luar sel makhluk hidup. Enzim ini berfungsi sebagai katalis yang sangan efisien dan mempunyai derajat yang tinggi.
b. Tata nama dan Kekhasan Enzim
Setiap enzim disesuaikan dengan nama substratnya dengan menambahkan “ase” dibelakangnya. Kekhasan enzim asam amino sebagai substrat dapat mengalami reaksi berbagai enzim.
c. Penggolongan Enzim
Enzim dapat digolongkan ke dalam 6 golongan yaitu :

  1. Oksidoreduktase terdapat dua enzimyaitu dehidrogenase dan oksidasi
  2. Transferase yaitu enzim yang bekerja sebagai katalis pada reaksi pemindahan suatu gugus dari suatu senyawa lain
  3. Hidrolase yaitu sebagai katalis reaksi hidrolisis
  4. Liase berperan dalam proses pemisahan Isomerase bekerja pada reaksi intramolekuler
  5. Ligase bekerja pada penggabungan dua molekul


J. CIRI- CIRI ENZIM
Ciri – ciri dari enzim ialah sebagai berikut :

  1. Merupakan sebuah protein, Jadi sifatnya sama dengan protein yaitu dapat menggumpal dalam suhu tinggi dan terpengaruh oleh temperatur.
  2. Bekerja secara khusus. Artinya hanya untuk bekerja dalam satu reaksi saja tidak dapat digunakan dalam beberapa reaksi.
  3. Dapat digunakan berulang kali. Enzim dapat digunakan berulang kali karena enzim tidak berubah pada saat terjadi reaksi.
  4. Rusak oleh panas. Enzim tidak tahan pada suhu tinggi, kebanyakan enzim hanya bertahan pada suhu 500C, rusaknya enzim oleh panas disebut dengan denaturasi.
  5. Dapat bekerja bolak – balik. Artinya satu enzim dapat menguraikan satu senyawa menjadi senyawa yang lain.


K. ISOZIM
Isozim atau Iso-enzim adalah dalam suatu campuran terdapat lebih dari satu enzim yang dapat berperan dalam suatu substrat untuk memberikan suatu hasil yang sama. Keuntungan bagi tumbuhan yang mengandung isoenzim adalah karena isozim – isozim tersebut akan memiliki tanggapan yang berbeda terhadap faltor – faktor lingkungan. Setiap isozim dihadapkan pada lingkungan kimia yang berbeda dab masing – masing berperan pada posisi yang berbeda dalam lintasan metabolic.

L. CARA KERJA ENZIM
Molekul selalu bergerak dan bertumbukan satu sama lain. Jika suau molekul substrat menumbuk molekul enzim yangtepat maka akan menempel pada enzim. Tempat menempelnya molekul substrat pada enzim disebut dengan sisi aktif.

Ada dua teori yang menjelaskan mengenai cara kerja enzim yaitu:
Teori kunci dan gembok
Teori ini diusulkan oleh Emil Fischer pada 1894. Menurut teori ini, enzim bekerja sangat spesifik. Enzim dan substrat memiliki bentuk geometri komplemen yang sama persis sehingga bisa saling melekat.
Teori ketepatan induksi
Teori ini diusulkan oleh Daniel Koshland pada 1958. Menurut teori ini, enzim tidak merupakan struktur yang spesifik melainkan struktur yang fleksibel. Bentuk sisi aktif enzim hanya menyerupai substrat. Ketika substrat melekat pada sisi aktif enzim, sisi aktif enzim berubah bentuk untuk menyerupai substrat.

M. FAKTOR YANG MEMPENGARUHI KERJA ENZIM
Ada banyak faktor yang mempengaruhi kerja enzim, yaitu:

  • Suhu. Semakin tinggi suhu, kerja enzim juga akan meningkat. Tetapi ada batas maksimalnya. Untuk hewan misalnya, batas tertinggi suhu adalah 40ºC. Bila suhu di atas 40ºC, enzim tersebut akan menjadi rusak. Sedangkan untuk tumbuhan batas tertinggi suhunya adalah 25ºC.
  • pH. Pengaruh pH terhadap suatu enzim bervariasi tergantung jenisnya. Ada enzim yang bekerja secara optimal pada kondisi asam. Ada juga yang bekerja secara optimal pada kondisi basa.
  • Konsentrasi substrat. Semakin tinggi konsentrasi substrat, semakin meningkat juga kerja enzim tetapi akan mencapai titik maksimal pada konsentrasi tertentu. Pada kepekatan substrat rendah, bilangan molekul enzim melebihi bilangan molekul substrat. Oleh karena itu,hanya sebagian kecil molekul enzim bertindak balas dengan molekul substrat. Apabila kepekatan substrat bertambah, lebih molekul enzim dapat bertindak balas dengan molekul substrat sehingga ke satu kadar maksimum. Penambahan kepekatan substrat selanjutnya tidak akan menambahkan kadar tindak balas karena kepekatan enzim menjadi faktor inhibitor
  • Konsentrasi enzim. Semakin tinggi konsentrasi enzim, semakin meningkat juga kerja enzim. Adanya activator. Aktivator merupakan zat yang memicu kerja enzim. Pada kepekatan enzim rendah, bilangan molekul substrat melebihi bilangan molekul enzim. Oleh karena itu hanya sebagian kecil molekul substrat ditindak balas dengan molekul enzim. Apabila kepekatan enzim bertambah, molekul substrat dapat bertindak balas dengan molekul enzim sehingga ke satu kadar maksimum. Penambahan kepekatan enzim selanjutnya tidak akan menambahkan kadar tindak balas kerana kepekatan substrat menjadi factor penghambat.
  • Adanya inhibitor. Inhibitor merupakan zat yang menghambat kerja enzim. Inhibitor ini terdiri dari :

ü Hambatan Reversibel
Yang disebabkan oleh terjadinya proses destruksi atau modifikasi sebuah gugus fungsi atau lebih yang terdapat pada molekul enzim. Hambatan reversible dapat berupa hambatan bersaing dan hambatan tidak bersaing. Hambatan bersaing disebabkan karena adanya molekul yang mirip dengan substrat, yang dapat pula membentuk kompleks yaitu kompleks enzim inhibitor (EI), sedang hambatan tidak bersaing ini tidak dipengaruhi oleh besarnya konsentrasi substrat dan inhibitor yang melakukannya disebut inhibitor tidak bersaing.
ü Hambatan tidak Reversibel
Hambatan tidak reversible ini terjadi karena inhibitor bereaksi tidak reversible dengan bagian tertentu pada enzim, sehingga mengakibatkan berubahnya bentuk enzim.
ü Hambatan Alosterik
Hambatan ruang karena enzim tersebut tidak berbentuk hiperbola seperti enzim – enzim ang lain tetapi akan terjadi grafik yang berbentuk sigmoida.

Penghambatan aktifitas enzim
Penghambatan aktifitas enzim ada dua tipe yaitu :
a. Kompetitif
Yaitu zat penghambat mempunyai struktur yang mirip dengan substrat sehingga dapat bergabung dengan sisi aktif enzim. Terjadi kompetisi antara substrat dengan inhibitor untuk bergabung dengan sisi aktif enzim (misal feed back effect)
b. Non kompetitif
Yaitu zat penghambat menyebabkan struktur enzim rusak sehingga sisi aktifnya tidak cocok lagi dengan substrat.

RESPIRASI

A. PENGERTIAN RESPIRASI
ü Respirasi adalah suatu proses pengambilan O2 untuk memecah senyawa-senyawa organik menjadi CO2, H2O dan energi. Namun demikian respirasi pada hakikatnya adalah reaksi redoks, dimana substrat dioksidasi menjadi CO2 sedangkan O2 yang diserap sebagai oksidator mengalami reduksi menjadi H2O. Yang disebut substrat respirasi adalah setiap senyawa organik yang dioksidasikan dalam respirasi, atau senyawa-senyawa yang terdapat dalam sel tumbuhan yang secara relatif banyak jumlahnya dan biasanya direspirasikan menjadi CO2 dan air. Sedangkan metabolit respirasi adalah intermediat-intermediat yang terbentuk dalam reaksi-reaksi respirasi
ü Respirasi yaitu suatu proses pembebasan energi yang tersimpan dalam zat sumber energi melalui proses kimia dengan menggunakan oksigen. Dari respirasi akan dihasilkan energi kimia ATP untak kegiatan kehidupan, seperti sintesis (anabolisme), gerak, pertumbuhan.
ü Ditinjau dari kebutuhannya akan oksigen, rspirasi dapat dibedakan menjadi respirasi aerob yaitu respirasi yang menggunakan oksigen bebas untuk mendapatkan energi dan respirasi anaerob atau biasa disebut dengan proses fermentasi yaitu respirasi yang tidak menggunakan oksigen namun bahan bukunya adalah seperti karbohidrat, asam lemak, asam amino sehingga hasil respirasi berupa karbondioksida, air dan energi dalam bentuk ATP.
ü Karbohidrat merupakan substrat respirasi utama yang terdapat dalam sel tumbuhan tinggi. Terdapat beberapa substrat respirasi yang penting lainnya diantaranya adalah beberapa jenis gula seperti glukosa, fruktosa, dan sukrosa; pati; asam organik; dan protein (digunakan pada keadaan & spesies tertentu).
Secara umum, respirasi karbohidrat dapat dituliskan sebagai berikut:
C6H12O6 + O2 6CO2 + H2O + energi
Reaksi di atas merupakan persamaan rangkuman dari reaksi-reaksi yang terjadi dalam proses respirasi.
ü Contoh:
Respirasi pada Glukosa, reaksi sederhananya:
C6H,206 + 6 02 ———————————> 6 H2O + 6 CO2 + Energi
(glukosa)

B. REAKSI PADA RESPIRASI
ü Reaksi pembongkaran glukosa sampai menjadi H20 + CO2 + Energi, melalui tiga tahap :

  1. Glikolisis.
  2. Daur Krebs.
  3. Transpor elektron respirasi.

1. Glikolisis:
Peristiwa perubahan :
Glukosa Þ Glulosa - 6 - fosfat Þ Fruktosa 1,6 difosfat Þ
3 fosfogliseral dehid (PGAL) / Triosa fosfat Þ Asam piravat.
Jadi hasil dari glikolisis :
- molekul asam piravat.
- molekul NADH yang berfungsi sebagai sumber elektron berenergi
tinggi.
- molekul ATP untuk setiap molekul glukosa.

2. Daur Krebs (daur trikarbekdlat):
Daur Krebs (daur trikarboksilat) atau daur asam sitrat merupakan pembongkaran asam piravat secara aerob menjadi CO2 dan H2O serta energi kimia

3. Rantai Transportasi Elektron Respiratori:
Dari daur Krebs akan keluar elektron dan ion H+ yang dibawa sebagai NADH2 (NADH + H+ + 1 elektron) dan FADH2, sehingga di dalam mitokondria (dengan adanya siklus Krebs yang dilanjutkan dengan oksidasi melalui sistem pengangkutan elektron) akan terbentuk air, sebagai hasil sampingan respirasi selain CO2.
ü Produk sampingan respirasi tersebut pada akhirnya dibuang ke luar tubuh melalui stomata pada tumbuhan dan melalui paru-paru pada peristiwa pernafasan hewan tingkat tinggi.

C. PROSES AKSEPTOR ATP
Ketiga proses respirasi yang penting tersebut dapat diringkas sebagai berikut:
1. Glikolisis:
Glukosa ——> 2 asam piruvat 2 NADH 2 ATP
2. Siklus Krebs:
2 asetil piruvat ——> 2 asetil KoA + 2 C02 2 NADH 2 ATP
2 asetil KoA ——> 4 CO2 6 NADH 2 PADH2
3. Rantai trsnspor elektron respirator:
10 NADH + 502 ——> 10 NAD+ + 10 H20 30 ATP
2 FADH2 + O2 ——> 2 PAD + 2 H20 4 ATP
Total 38 ATP

D. MANFAAT RESPIRASI
Respirasi banyak memberikan manfaat bagi tumbuhan. Manfaat tersebut terlihat dalam proses respirasi dimana terjadi proses pemecahan senyawa organik, dari proses pemecahan tersebut maka dihasilkanlah senyawa-senyawa antara yang penting sebagai ”Building Block”. Building Block merupakan senyawa-senyawa yang penting sebagai pembentuk tubuh. Senyawa-senyawa tersebut meliputi asam amino untuk protein; nukleotida untuk asam nukleat; dan prazat karbon untuk pigmen profirin (seperti klorofil dan sitokrom), lemak, sterol, karotenoid, pigmen flavonoid seperti antosianin, dan senyawa aromatik tertentu lainnya, seperti lignin.
Telah diketahui bahwa hasil akhir dari respirasi adalah CO2 dan H2O, hal ini terjadi bila substrat secara sempurna dioksidasi, namun bila berbagai senyawa di atas terbentuk, substrat awal respirasi tidak keseluruhannya diubah menjadi CO2 dan H2O. Hanya beberapa substrat respirasi yang dioksidasi seluruhnya menjadi CO2 dan H2O, sedangkan sisanya digunakan dalam proses anabolik, terutama di dalam sel yang sedang tumbuh. Sedangkan energi yang ditangkap dari proses oksidasi sempurna beberapa senyawa dalam proses respirasi dapat digunakan untuk mensintesis molekul lain yang dibutuhkan untuk pertumbuhan.

E. LAJU RESPIRASI
Laju respirasi dapat dipengaruhi oleh beberapa faktor antara lain:
ü Ketersediaan substrat. Tersedianya substrat pada tanaman merupakan hal yang penting dalam melakukan respirasi. Tumbuhan dengan kandungan substrat yang rendah akan melakukan respirasi dengan laju yang rendah pula. Demikian sebliknya bila substrat yang tersedia cukup banyak maka laju respirasi akan meningkat.
ü Ketersediaan Oksigen. Ketersediaan oksigen akan mempengaruhi laju respirasi, namun besarnya pengaruh tersebut berbeda bagi masing-masing spesies dan bahkan berbeda antara organ pada tumbuhan yang sama. Fluktuasi normal kandungan oksigen di udara tidak banyak mempengaruhi laju respirasi, karena jumlah oksigen yang dibutuhkan tumbuhan untuk berrespirasi jauh lebih rendah dari oksigen yang tersedia di udara.
ü Suhu. Pengaruh faktor suhu bagi laju respirasi tumbuhan sangat terkait dengan faktor Q10, dimana umumnya laju reaksi respirasi akan meningkat untuk setiap kenaikan suhu sebesar 10oC, namun hal ini tergantung pada masing-masing spesies.
ü Tipe dan umur tumbuhan. Masing-masing spesies tumbuhan memiliki perbedaan metabolsme, dengan demikian kebutuhan tumbuhan untuk berespirasi akan berbeda pada masing-masing spesies. Tumbuhan muda menunjukkan laju respirasi yang lebih tinggi dibanding tumbuhan yang tua. Demikian pula pada organ tumbuhan yang sedang dalam masa pertumbuhan.

F. PROSES RESPIRASI
ü Proses respirasi diawali dengan adanya penangkapan O2 dari lingkungan. Proses transport gas-gas dalam tumbuhan secara keseluruhan berlangsung secara difusi. Oksigen yang digunakan dalam respirasi masuk ke dalam setiap sel tumbuhan dengan jalan difusi melalui ruang antar sel, dinding sel, sitoplasma dan membran sel. Demikian juga halnya dengan CO2 yang dihasilkan respirasi akan berdifusi ke luar sel dan masuk ke dalam ruang antar sel. Hal ini karena membran plasma dan protoplasma sel tumbuhan sangat permeabel bagi kedua gas tersebut. Setelah mengambil O2 dari udara, O2 kemudian digunakan dalam proses respirasi dengan beberapa tahapan, diantaranya yaitu glikolisis, dekarboksilasi oksidatif, siklus asam sitrat, dan transpor elektron. Tahapan yang pertama adalah glikolisis, yaitu tahapan pengubahan glukosa menjadi dua molekul asam piruvat (beratom C3), peristiwa ini berlangsung di sitosol. As. Piruvat yang dihasilkan selanjutnya akan diproses dalam tahap dekarboksilasi oksidatif. Selain itu glikolisis juga menghasilkan 2 molekul ATP sebagai energi, dan 2 molekul NADH yang akan digunakan dalam tahap transport elektron. Dalam keadaan anaerob, As. Piruvat hasil glikoisis akan diubah menjadi karbondioksida dan etil alkohol. Proses pengubahan ini dikatalisis oleh enzim dalam sitoplasma. Dalam respirasi anaerob jumlah ATP yang dihasilkan hanya dua molekul untuk setiap satu molekul glukosa, hasil ini berbeda jauh dengan ATP yang dihasilkan dari hasil keseluruhan respirasi aerob yaitu 36 ATP.
ü Tahapan kedua dari respirasi adalah dekarboksilasi oksidatif, yaitu pengubahan asam piruvat (beratom C3) menjadi Asetil KoA (beratom C2) dengan melepaskan CO2, peristiwa ini berlangsung di sitosol. Asetil KoA yang dihasilkan akan diproses dalam siklus asam sitrat. Hasil lainnya yaitu NADH yang akan digunakan dalam transpor elektron.
ü Tahapan selanjutnya adalah siklus asam sitrat (daur krebs) yang terjadi di dalam matriks dan membran dalam mitokondria, yaitu tahapan pengolahan asetil KoA dengan senyawa asam sitrat sebagai senyawa yang pertama kali terbentuk. Beberapa senyawa dihasilkan dalam tahapan ini, diantaranya adalah satu molekul ATP sebagai energi, satu molekul FADH dan tiga molekul NADH yang akan digunakan dalam transfer elektron, serta dua molekul CO2. Tahapan terakhir adalah transfer elektron, yaitu serangkaian reaksi yang melibatkan sistem karier elektron (pembawa elektron). Proses ini terjadi di dalam membran dalam mitokondria. Dalam reaksi ini elektron ditransfer dalam serangkaian reaksi redoks dan dibantu oleh enzim sitokrom, quinon, piridoksin, dan flavoprotein. Reaksi transfer elektron ini nantinya akan menghasilkan H2O.

FERMENTASI
Pada kebanyakan tumbuhan den hewan respirasi yang berlangsung adalah respirasi aerob, namun demikian dapat saja terjadi respirasi aerob terhambat pada sesuatu hal, maka hewan dan tumbuhan tersebut melangsungkan proses fermentasi yaitu proses pembebasan energi tanpa adanya oksigen, nama lainnya adalah respirasi anaerob. Dari hasil akhir fermentasi, dibedakan menjadi fermentasi asam laktat/asam susu dan fermentasi alkohol.
Fermentasi Asam Laktat.
Fermentasi asam laktat yaitu fermentasi dimana hasil akhirnya adalah asam laktat. Peristiwa ini dapat terjadi di otot dalam kondisi anaerob.
Reaksinya: C6H12O6 ————> 2 C2H5OCOOH + Energi
Prosesnya :

1. Glukosa ————> asam piruvat (proses Glikolisis). Enzim
C6H12O6 ————> 2 C2H3OCOOH + Energi
2. Dehidrogenasi asam piravat akan terbentuk asam laktat.
2 C2H3OCOOH + 2 NADH2 ————> 2 C2H5OCOOH + 2 NAD
piruvat dehidrogenasa
Energi yang terbentak dari glikolisis hingga terbentuk asam laktat :
8 ATP — 2 NADH2 = 8 - 2(3 ATP) = 2 ATP.

Fermentasi Alkohol
Pada beberapa mikroba peristiwa pembebasan energi terlaksana karena asam piruvat diubah menjadi asam asetat + CO2 selanjutaya asam asetat diabah menjadi alkohol.
Dalam fermentasi alkohol, satu molekul glukosa hanya dapat menghasilkan 2 molekul ATP, bandingkan dengan respirasi aerob, satu molekul glukosa mampu menghasilkan 38 molekul ATP.
Reaksinya :

1. Gula (C6H12O6) ————> asam piruvat (glikolisis)
2. Dekarbeksilasi asam piruvat.
Asampiruvat ————————————————————> asetaldehid + CO2.
piruvat dekarboksilase (CH3CHO)
3. Asetaldehid oleh alkohol dihidrogenase diubah menjadi alcohol
(etanol).
2 CH3CHO + 2 NADH2 —————————————————> 2 C2HsOH + 2
NAD.
alkohol dehidrogenase
enzim
Ringkasan reaksi :
C6H12O6 —————> 2 C2H5OH + 2 CO2 + 2 NADH2 + Energi

Fermentasi Asam Cuka
Fermentasi asam cuka merupakan suatu contoh fermentasi yang berlangsung dalam keadaan aerob. Fermentasi ini dilakukan oleh bakteri asam cuka (Acetobacter aceti) dengan substrat etanol. Energi yang dihasilkan 5 kali lebih besar dari energi yang dihasilkan oleh fermentasi alkohol secara anaerob.]
Reaksi:
aerob
C6H12O6 —————> 2 C2H5OH ———————————————> 2
CH3COOH + H2O + 116 kal (glukosa) bakteri asam cuka asam cuka

Perkembangan dan Pertumbuhan

Perkembangan dan Pertumbuhan


Perkembangan, dan pergerakan tumbuhan dikendalikan beberapa golongan zat yang secara umum dikenal sebagai hormon tumbuhan atau fitohormon. Penggunaan istilah "hormon" sendiri menggunakan analogi fungsi hormon pada hewan; dan, sebagaimana pada hewan, hormon juga dihasilkan dalam jumlah yang sangat sedikit di dalam sel. Beberapa ahli berkeberatan dengan istilah ini karena fungsi beberapa hormon tertentu tumbuhan (hormon endogen, dihasilkan sendiri oleh individu yang bersangkutan) dapat diganti dengan pemberian zat-zat tertentu dari luar, misalnya dengan penyemprotan (hormon eksogen, diberikan dari luar sistem individu). Mereka lebih suka menggunakan istilah zat pengatur tumbuh (bahasa Inggris plant growth regulator).
Hormon tumbuhan merupakan bagian dari proses regulasi genetik dan berfungsi sebagai prekursor. Rangsangan lingkungan memicu terbentuknya hormon tumbuhan. Bila konsentrasi hormon telah mencapai tingkat tertentu, sejumlah gen yang semula tidak aktif akan mulai ekspresi. Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankan kelangsungan hidup jenisnya.
Pemahaman terhadap fitohormon pada masa kini telah membantu peningkatan hasil pertanian dengan ditemukannya berbagai macam zat sintetis yang memiliki pengaruh yang sama dengan fitohormon alami. Aplikasi zat pengatur tumbuh dalam pertanian modern mencakup pengamanan hasil (seperti penggunaan cycocel untuk meningkatkan ketahanan tanaman terhadap lingkungan yang kurang mendukung), memperbesar ukuran dan meningkatkan kualitas produk (misalnya dalam teknologi semangka tanpa biji), atau menyeragamkan waktu berbunga (misalnya dalam aplikasi etilena untuk penyeragaman pembungaan tanaman buah musiman), untuk menyebut beberapa contohnya.

PERTUMBUHAN PADA TUMBUHAN
Secara umum pertumbuhan dan pekembangan pada tumbuhan diawali untuk stadium zigot yang merupakan hasil pembuahan sel kelamin betina dengan jantan. Pembelahan zigot menghasilkan jaringan meristem yang akan terus membelah dan mengalami diferensiasi. Diferensiasi adalah perubahan yang terjadi dari keadaan sejumlah sel, membentuk organ-organ yang mempunyai struktur dan fungsi yang berbeda. Terdapat 2 macam pertumbuhan, yaitu:
1. Pertumbuhan Primer
Terjadi sebagai hasil pembelahan sel-sel jaringan meristem primer. Berlangsung pada embrio, bagian ujung-ujung dari tumbuhan seperti akar dan batang.
Embrio memiliki 3 bagian penting :
a. tunas embrionik yaitu calon batang dan daun
b. akar embrionik yaitu calon akar
c. kotiledon yaitu cadangan makanan

Gbr. Embrio Tumbuhan
Pertumbuhan tanaman dapat diukur dengan alat yang disebut auksanometer.
Daerah pertumbuhan pada akar dan batang berdasar aktivitasnya tcrbagi menjadi 3 daerah
Daerah pembelahan Sel-sel di daerah ini aktif membelah (meristematik)
Daerah pemanjangan. Berada di belakang daerah pembelahan.
Daerah diferensiasi. Bagian paling belakang dari daerah pertumbuhan. Sel-sel mengalami diferensiasi membentuk akar yang sebenarnya serta daun muda dan tunas lateral yang akan menjadi cabang.

2. Pertumbuhan Sekunder
Merupakan aktivitas sel-sel meristem sekunder yaitu kambium dan kambium gabus. Pertumbuhan ini dijumpai pada tumbuhan dikotil, gymnospermae dan menyebabkan membesarnya ukuran (diameter) tumubuhan.
Mula-mula kambium hanya terdapat pada ikatan pembuluh, yang disebut kambium vasis atau kambium intravasikuler. Fungsinya adalah membentuk xilem dan floem primer.
Selanjutnya parenkim akar/batang yang terletak di antara ikatan pembuluh, menjadi kambium yang disebut kambium intervasis.
Kambium intravasis dan intervasis membentuk lingkaran tahun: bentuk konsentris. Kambium yang berada di sebelah dalam jaringan kulit yang berfungsi sebagai pelindung. Terbentuk akibat ketidakseimbangan antara permbentukan xilem dan floem yang lebih cepat dari pertumbuhan kulit.
ke dalam membentuk feloderm : sel-sel hidup
ke luar membentuk felem : sel-sel mati





Gbr. Lingkaran tahun karena aktivitas xilem sekunder Gbr. Irisan melintang batang waru

A. Faktor Luar
ir dan Mineral berpengaruh pada pertumbuhan tajuk A2 akar. Diferensiasi salah satu unsur hara atau lebih akan menghambat atau menyebabkan pertumbuhan tak normal.
Kelembaban.
Suhu di antaranya mempengaruhi kerja enzim. Suhu ideal yang diperlukan untuk pertumbuhan yang paling baik adalah suhu optimum, yang berbeda untuk tiap jenis tumbuhan.
Cahaya mempengaruhi fotosintesis. Secara umum merupakan faktor penghambat.
Etiolasi adalah pertumbuhan yang sangat cepat di tempat yang gelap. Fotoperiodisme adalah respon tumbuhan terhadap intensitas cahaya dan panjang penyinaran.

B. Faktor Dalam

Faktor hereditas.
Hormon.
Auksin

adalah senyawa asam indol asetat (IAA) yang dihasilkan di ujung meristem apikal (ujung akar dan batang). F.W. Went (1928) pertama kali menemukan auksin pada ujung koleoptil kecambah gandum Avena sativa.
membantu perkecambahan
dominasi apikal
Giberelin

Senyawa ini dihasilkan oleh jamur Giberella fujikuroi atau Fusarium moniliformae, ditemukan oleh F. Kurusawa. Fungsi giberelin :
pemanjangan tumbuhan
berperan dalam partenokarpi
Sitokinin

Pertama kali ditemukan pada tembakau. Hormon ini merangsang pembelahan sel.
Gas etilen

Banyak ditemukan pada buah yang sudah tua
Asam absiat
Florigen
Kalin

Hormon pertumbuhan organ, terdiri dari :
Rhizokalin
Kaulokali
Filokalin
Antokalin

Asam traumalin atau kambium luka

Merangsang pembelahan sel di daerah luka sebagai mekanisme untuk menutupi luka




Gbr. a. Distribusi Auksin pada Kecambah
b. Pertumbuhan Ujung Akar dan Ujung Batang

Banyak faktor alasan atau penyebab yang mempengaruhi perkembangan dan pertumbuhan tumbuh-tumbuhan, tanaman, pohon, dll. Apabila faktor tersebut kebutuhannya tidak terpenuhi maka tanaman tersebut bisa mengalami dormansi / dorman yaitu berhenti melakukan aktifitas hidup. Faktor pengaruh tersebut yakni :
1. Faktor Suhu / Temperatur Lingkungan
Tinggi rendah suhu menjadi salah satu faktor yang menentukan tumbuh kembang, reproduksi dan juga kelangsungan hidup dari tanaman. Suhu yang baik bagi tumbuhan adalah antara 22 derajat celcius sampai dengan 37 derajad selsius. Temperatur yang lebih atau kurang dari batas normal tersebut dapat mengakibatkan pertumbuhan yang lambat atau berhenti
2. Faktor Kelembaban / Kelembapan Udara
Kadar air dalam udara dapat mempengaruhi pertumbuhan serta perkembangan tumbuhan. Tempat yang lembab menguntungkan bagi tumbuhan di mana tumbuhan dapat mendapatkan air lebih mudah serta berkurangnya penguapan yang akan berdampak pada pembentukan sel yang lebih cepat.
3. Faktor Cahaya Matahari
Sinar matahari sangat dibutuhkan oleh tanaman untuk dapat melakukan fotosintesis (khususnya tumbuhan hijau). Jika suatu tanaman kekurangan cahaya matahari, maka tanaman itu bisa tampak pucat dan warna tanaman itu kekuning-kuningan (etiolasi). Pada kecambah, justru sinar mentari dapat menghambat proses pertumbuhan.
4. Faktor Hormon
Hormon pada tumbuhan juga memegang peranan penting dalam proses perkembangan dan pertumbuhan seperti hormon auksin untuk membantu perpanjangan sel, hormon giberelin untuk pemanjangan dan pembelahan sel, hormon sitokinin untuk menggiatkan pembelahan sel dan hormon etilen untuk mempercepat buah menjadi matang. Mengenai hormon tanaman akan dijelaskan pada artikel lain yang dapat dicari melalui fitur pencarian di sebalan kiri situs organisasi

Fotosintesis

Fotosintesis


Fotosintesis (foto = cahaya; sintesis= menyusun) pada tumbuhan terutama tejadi di daun. Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan fotosintesis, karena fotosintesis terjadi di dalam kloroplas. Kloroplas merupakan organel plastida yang mengandung pigmen hijau daun (klorofil) yang berperan untuk menangkap cahaya serta memberi warna hijau pada daun. Oleh sebab itu fotosintesis dapat juga diartikan sebagai proses pembentukan bahan organic (C6H12O6) dari bahan anorganik (H2O +dan CO2 ) dengan bantuan cahaya dan kloroplas.Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.
Secara umum :
6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2
Proses fotosintesis terbagi menjadi dua tahap reaksi yaitu : reaksi terang dan reksi gelap (siklus Kelvin).

A. Reaksi Terang, yang membutuhkan cahaya

Reaksi terang merupakan penggerak bagi reaksi pengikatan CO2 dari udara. Reaksi ini melibatkan beberapa kompleks protein dari membran tilakoid yang terdiri dari sistem cahaya (fotosistem I dan II), sistem pembawa elektron, dan komplek protein pembentuk ATP (enzim ATP sintase). Reaksi terang mengubah energi cahaya menjadi energi kimia, juga menghasilkan oksigen dan mengubah ADP dan NADP+ menjadi energi pembawa ATP dan NADPH. Reaksi terang terjadi di tilakoid, yaitu struktur cakram yang terbentuk dari pelipatan membran dalam kloroplas. Membran tilakoid menangkap energi cahaya dan mengubahnya menjadi energi kimia. Jika ada bertumpuk-tumpuk tilakoid, maka disebut grana.
Reaksi terang pada fotosintesis ini terbagi menjadi dua, yaitu fosforilasi siklik dan fosforilasi nonsiklik. Fosforilasi adalah reaksi penambahan gugus fosfat kepada senyawa organik untuk membentuk senyawa fosfat organik. Pada reaksi terang, karena dibantu oleh cahaya, fosforilasi ini disebut juga fotofosforilasi.

1. Fotofosforilasi Siklik

Reaksi fotofosforilasi siklik adalah reaksi yang hanya melibatkan satu fotosistem, yaitu fotosistem I. Dalam fotofosforilasi siklik, pergerakan elektron dimulai dari fotosistem I dan berakhir di fotosistem I.
















Pertama, energi cahaya yang ditangkap, membuat elektron-elektron di P700 tereksitasi (menjadi aktif karena rangsangan dari luar), dan keluar menuju akseptor elektron primer kemudian menuju rantai transpor elektron. Karena P700 mentransfer elektronnya ke akseptor elektron, P700 mengalami defisiensi elektron dan tidak dapat melaksanakan fungsinya. Selama perpindahan elektron dari akseptor satu ke akseptor lain, selalu terjadi transformasi hidrogen bersama-sama elektron. Rantai transpor ini menghasilkan gaya penggerak proton, yang memompa ion H+ melewati membran, yang kemudian menghasilkan gradien konsentrasi yang dapat digunakan untuk menggerakkan sintase ATP selama kemiosmosis, yang kemudian menghasilkan ATP. Dari rantai transpor, elektron kembali ke fotosistem I. Dengan kembalinya elektron ke fotosistem I, maka fotosistem I dapat kembali melaksanakan fungsinya. Fotofosforilasi siklik terjadi pada beberapa bakteri, dan juga terjadi pada semua organisme fotoautotrof.

2. Fotofosforilasi Nonsiklik

Reaksi fotofosforilasi nonsiklik adalah reaksi dua tahap yang melibatkan dua fotosistem klorofil yang berbeda, yaitu fotosistem I dan II. Dalam fotofosforilasi nonsiklik, pergerakan elektron dimulai di fotosistem II, tetapi elektron tidak kembali lagi ke fotosistem II.












Mula-mula, molekul air diurai menjadi 2H+ + 1/2O2 + 2e- melalui peristiwa yang disebut dengan fotolisis. Dua elektron dari molekul air tersimpan di fotosistem II, sementara ion H+ akan digunakan pada reaksi yang lain dan O2 akan dilepaskan ke udara bebas. Karena tersinari oleh cahaya matahari, dua elektron yang ada di P680 menjadi tereksitasi dan keluar menuju akseptor elektron primer. Setelah terjadi transfer elektron, P680 menjadi defisiensi elektron, tetapi dapat cepat dipulihkan berkat elektron dari hasil penguraian air tadi. Setelah itu mereka bergerak lagi ke rantai transpor elektron dan akhirnya sampai di fotosistem I, tepatnya di P700. Sepanjang perjalanan di rantai transpor, dua elektron tersebut mengeluarkan energi untuk reaksi sintesis kemiosmotik ATP, yang kemudian menghasilkan ATP.
Sesampainya di fotosistem I, dua elektron tersebut mendapat pasokan tenaga yang cukup besar dari cahaya matahari. Kemudian elektron itu bergerak ke molekul akseptor, feredoksin, dan akhirnya sampai di ujung rantai transpor, dimana dua elektron tersebut telah ditunggu oleh NADP+ dan H+, yang berasal dari penguraian air. Dengan bantuan suatu enzim bernama Feredoksin-NADP reduktase, disingkat FNR, NADP+, H+, dan elektron tersebut menjalani suatu reaksi:
>> NADP+ + H+ + 2e- —> NADPH
NADPH, sebagai hasil reaksi diatas, akan digunakan dalam reaksi Calvin-Benson, atau reaksi gelap.
Secara ringkas reaksi terang:

18ADP + 18Pi + 12NADP + 12 H2O → 18ATP + 12NADPH + 6O2 +6 H2O

B. Reaksi Gelap

Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis. Reaksi ini tidak membutuhkan cahaya. Reaksi gelap terjadi pada bagian kloroplas yang disebut stroma. Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang, dan CO2, yang berasal dari udara bebas. Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme. Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson.
Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu karboksilasi, reduksi, dan regenerasi.
Karboksilasi / fiksasi, pada fase ini ada penmabahan CO2 dan H2O kedalam RuBP untuk membentuk 2 molekul 3-PGA.
Reduksi, pada fase ini 3-PGA dreduksi oleh NADPH menjadi 3-PGald. Sebenarnya reduksi tidak terjadi secar langsung, pertama 3-PGA di ubah dulu menjadi asam 1,3 bifosfogliserat,dimana digunakan sejumlah ATP sehingga berubah menjadi ADP. Kemudian 1,3 bifosfogliserat direduksi menjadi 3-PGald.
Untuk setiap CO2 yang ditambat diperlukan 2 ATP dan 2 NADPH, sedangkan ATP yang ke-3 digunakan pada saat regenerasi sehingga untuk semuanya diperlukan 3 ATP dan 2 NADPH.
Regenerasi, merupakan fase terbentuknya RuBP dari konversi pada ribulosa-5- fospat yang merupakan zat antara dalam siklus ini dengan digunakan ATP yag ke-3.
Tiga putaran siklus Kelvin akan memfiksasi 3CO2 menghasilkan 6 molekul 3-PGald yang akan digunakan untuk mensintesis pati, sukrosa, polysakarida untuk dinding sel, dll.

Sehingga secara umum reaksi gelap :
18ATP + 12NADPH + 6CO2 +6 akseptor → C6H12O6 + 18ADP + 18Pi + 12NADP + 6 akseptor
Hasil penelitian dari Kortschak,dkk (1965) serta dari Fats dan Slack bahwa reaksi karboksilasi utama dari beberapa spesies berbeda – beda .
Spesies C3, mula –mula menambat CO2 menjadi 3-PGA (punya 3 atom c). Contoh Gimnospermae, Pteridophyta, Briophyta
Spesies C4, menghasilkan asam malat ( 4 atom C) sebagai produk awal.Contoh tebu, jagung,dll.
Spesies CAM, hampir sama dengan tumbuhan C4 hanya saja asam malat dibentuk siang hari sedangkan penguraiannya malam hari. Hal ini di karenakan stomata pada tumbuhan ini hanya terbuka pada saat malam hari. Contoh family crassulaceae

Adapun faktor yang memengaruhi fotosintesis terbagi menjadi dua faktor antara lain:
Faktor internal
Kandungan klorofil
Morfologi dan anatomi daun
Enzim fotosintesis
Pengendalian genetic
Umur daun
Kebutuhan fotosintat
Factor eksternalnya
CO2 dilingkungan
Cahaya
Suhu
Air
O2
nutrisi

Gerak Pada Tumbuhan

Gerak Pada Tumbuhan


Setiap organisme mampu menerima rangsang yang disebut IRITABILITAS, dan mampu pula menanggapi rangsang tersebut. Salah satu bentuk tanggapan yang umum adalah berupa gerak. Gerak berupa perubahan posisi tubuh atau perpindahan yang meliputi seluruh atau sebagian dari tubuh

Jika pada hewan rangsang disalurkan melalui saraf, maka pada tumbuhan rangsang disalurkan melalui benang plasma (PLASMODESMA) yang masuk ke dalam sel melalui dinding yang disebut NOKTAH.
Gerak pada tumbuhan dibagi 3 golongan, yaitu :

1. GERAK HIGROSKOPIS
Yaitu gerak yang ditimbulkan oleh pengaruh perubahan kadar air.
Misalnya:
Pecahnya buah tanaman polong
Membukanya anulus pada sporangium (kotak spora) pada tumbuhan paku-pakuan
Membuka dan menutupnya sporangium pada tumbuhan lumut oleh peristom

2. Gerak ESIONOM
Merupakan reaksi gerak tumbuhan yang disebabkan oleh adanya rangsangan dari luar. Berdasarkan hubungan antara arah respon gerakan dengan asal rangsangan, gerak etionom dapat dibedakan menjadi gerak taksis, tropisme, dan nasti. Jika yang bergerak hanya bagian dari tumbuhan maka disebut gerak tropisme. Jika yang bergerak seluruh bagian tumbuhan maka disebut gerak taksis. Jika gerakan itu tidak dipengaruhi oleh arah datangnya rangsangan disebut gerak nasti. yaitu gerak yang dipengaruhi rangsang dari luar.
TROPI (TROPISME)

Yaitu gerak bagian tumbuhan yang dipengaruhi oleh arah rangsang. Tropisme positif jika mendekati rangsang dan tropisme negatif jika menjauhi.
Bentuk tropisme antara lain
Fototropi (heliotropi) : adalah gerak batang ke arah cahaya.
Geotropi : adalah gerak tumbuh akar ke pusat bumi.
Hidrotropi : adalah gerak tubuh tumbuhan ke arah air.
Tigmotropi (haptotropi) : adalah gerak membelok bagian tanaman sebagai akibat persinggungan .contoh : membelitnya ujung batang dan sulur Cucurbitaceae.
Kemotropi : adalah gerak karena rangsang kimia. contoh : akar menuju zat makanan atau menjauhi zat racun
TAKSIS

Yaitu gerak berpindah seluruh tubuh tumbuhan yang dipengaruhi oleh rangsang. Seperti bentuk tropisme, terdapat taksis positif dan negatif. Beberapa bentuk taksis :
Fototaksis : rangsangannya cahaya
contoh :
Cloroplas bergerak ke sisi sel yang mendapatkan cahaya matahari.
Euglena viridis selalu bergerak menuju tempat yang terkena cahaya.
Spora jamur Pilobolus akan bergerak menuju tempat yang terkena cahaya.
Kemotaksis : rangsangannya adalah zat kimia
contoh :
Bacteri aerob selalu berkumpul pada tempat yang banyak oksigen.
Spermatozoid bergerak menuju sel telur pada peristiwa pembuahan lumut. Rangsanga penyebabnya adalah zat gula atau protein.
NASTI

Nasti adalah gerak tumbuhan yang arahnya tidak dipengaruhi oleh arah datangnya rangsangan, tetapi ditentukan oleh tumbuhanitu sendiri.

Fotonasti
Fotonasti gerak nasty yang disebabkan oleh rangsangan cahaya. Misal, gerakan mekarnya bunga pukul empat (Mirabilis jalapa) di sore hari.

Niktinasi
Niktinasi (nyktos = malam) merupakan gerak nasty yang disebabkan oleh suasana gelap,sehingga disebut juga gerak tidur. Misalnya,pada malam hari daun-daun tumbuhan Leguminosae atau polong-polongan seperti bunga merak (Caesalpinia pulcherrima)dan daunkupu-kupu (Bauhinia purpurea) akan menutup dan akan membukakeesokan harinya ketika matahari terbit.

Tigmonasti atau Seismonasti
Tigmonasti / seismonasti adalah gerakan nasty yang disebabkan oleh rangsang sentuhanatau getaran. Contoh gerak menutupnya daun sikejut atau putrid malu (Mimosa pudica), jika disentuh. Jika hanya satu anak daun dirangsang dengan sentuhan, rangsangan itu diteruskan keseluruh tumbuhan sehingga anak daun lain ikut mengatup.

Termonasti
Termonasti merupakan gerak nasti yang disebabkan oleh rangsang suhu, seperti mekarnya bunga tulip dan crocus. Bunga-bunga tersebut mekar jika mendadak mengalami kenaikan temperature, dan akan menutup kembali bilatemperatur menurun.

Haptonasi
Haptonasi merupakan gerak nasti yang Terjadi pada tumbuhan insektivora yang disebabkan oleh sentuhan serangga. Daun pada tumbuhan insektivora misalnya Dionaea, sejenis tumbuhan perangkap lalat (Venus”s flytrap) sangat sensitif terhadap sentuhan. Bila ada serangga yang menyentuh bagian dalam daun, daun akan segera menutup sehingga serangga akan terperangkap di antara kedua belhan daun.

Nasti Kompleks
GERAK ENDONOM
yaitu gerak yang belum/tidak diketahui sebabnya. Karena belum diketahui sebabnya ada yang menduga tumbuhan itu sendiri yang menggerakkannya gerak
OTONOM, misalnya aliran plasma sel.

a. Geotropisme
Geotropisme adalah gerak bagian tumbuhan karena pengaruh gravitasi bumi (geo = bumi). Jika arah geraknya menuju rangsang disebut geotropisme positif, misalnya gerakan akar menuju tanah. Jika arah geraknya menjauhi rangsang disebut geotropism negatif, misalnya gerak tumbuh batang menjauhi tanah.
b. Hidrotropisme
Hidrotropisme adalah gerak bagian tumbuhan karena rangsangan air (hidro = air). Jika gerakan itu mendekati air maka disebut hidrotropisme positif. Misalnya, akar tanaman tumbuh bergerk menuju tempat yang banyak airnya ditanah. Jika tanaman tumbuh menjauhi air disebut hidrotropisme negatif. Misal, gerak pucuk batang tumbuhan yang tumbuh keatas air.
c. Kemotropisme
Kemotropisme adalah gerak bagian tumbuhan karena rangsangan zat kimia. Jika gerakannya mendekati zat kimia tertentu disebut kemotropisme positif. Misalnya, gerak akar menuju zat didalam tanah. Jika gerakannya menjauhi zat kimia tertentu disebut kemotropisme negatif, contohnya gerak akar menjauhi racun.
d. Tigmotropisme
Gerak Bagian tumbuhan karena adanya rangsangan sentuhan satu sisi atau persinggungan disebut trigmotropisme. Gerakan ini tampak jelas pada gerak membelit ujung batang ataupun ujung sulur dari Cucurbitaceaedan Passiflora. Contoh tanaman yang bersulur adalah ercis, anggur, markisa, semangka, dan mentimun.

Hormon dan Zat Tumbuh

Hormon dan Zat Tumbuh


Pertumbuhan, perkembangan, dan pergerakan tumbuhan dikendalikan beberapa golongan zat yang secara umum dikenal sebagai hormon tumbuhan atau fitohormon. Penggunaan istilah "hormon" sendiri menggunakan analogi fungsi hormon pada hewan; dan, sebagaimana pada hewan, hormon juga dihasilkan dalam jumlah yang sangat sedikit di dalam sel. Beberapa ahli berkeberatan dengan istilah ini karena fungsi beberapa hormon tertentu tumbuhan (hormon endogen, dihasilkan sendiri oleh individu yang bersangkutan) dapat diganti dengan pemberian zat-zat tertentu dari luar, misalnya dengan penyemprotan (hormon eksogen, diberikan dari luar sistem individu). Mereka lebih suka menggunakan istilah zat pengatur tumbuh (bahasa Inggris plant growth regulator).

Hormon tumbuhan merupakan bagian dari proses regulasi genetik dan berfungsi sebagai prekursor. Rangsangan lingkungan memicu terbentuknya hormon tumbuhan. Bila konsentrasi hormon telah mencapai tingkat tertentu, sejumlah gen yang semula tidak aktif akan mulai ekspresi. Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankan kelangsungan hidup jenisnya.

Pemahaman terhadap fitohormon pada masa kini telah membantu peningkatan hasil pertanian dengan ditemukannya berbagai macam zat sintetis yang memiliki pengaruh yang sama dengan fitohormon alami. Aplikasi zat pengatur tumbuh dalam pertanian modern mencakup pengamanan hasil (seperti penggunaan cycocel untuk meningkatkan ketahanan tanaman terhadap lingkungan yang kurang mendukung), memperbesar ukuran dan meningkatkan kualitas produk (misalnya dalam teknologi semangka tanpa biji), atau menyeragamkan waktu berbunga (misalnya dalam aplikasi etilena untuk penyeragaman pembungaan tanaman buah musiman), untuk menyebut beberapa contohnya.

Sejauh ini dikenal sejumlah golongan zat yang dianggap sebagai fitohormon, yaitu
* Auksin
* Sitokinin
* Giberelin atau asam giberelat (GA)
* Etilena
* Asam absisat (ABA)
* Asam jasmonat
* Steroid (brasinosteroid)
* Salisilat
* Poliamina.

AUXIN
Auxin adalah salah satu hormon tumbuh yang tidak terlepas dari proses pertumbuhan dan perkembangan (growth and development) suatu tanaman.

Hasil penemuan Kogl dan Konstermans (1934) dan Thymann (1935) mengemukakan bahwa Indole Acetic Acid (IAA) adalah suatu auxin.

Metabolisme Auxin
Hasil penelitian terhadap metabolisme auxin menunjukan bahwa konsentrasi auxin di dalam tanaman mempengaruhi pertumbuhan tanaman. Adapun faktor-faktor yang mempengaruhi konsentrasi IAA ini adalah :
Sintesis Auxin
Pemecahan Auxin
In-aktifnya IAA sebagai akibat proses pemecahan molekul.

Sebagaimana diketahui, IAA adalah endogeneous auxin yang terbentuk dari Trypthopan yang merupakan suatu senyawa dengan inti Indole dan selalu terdapat dalam jaringan tanaman di dalam proses biosintesis. Trypthopan berubah menjadi IAA dengan membentuk Indole pyruvic acid dan Indole-3-acetaldehyde. Tetapi IAA ini dapat pula terbentuk dari Tryptamine yang selanjutnya menjadi Indole-3-acetaldehyde, selanjutnya menjadi Indole-3-acetid acid (IAA). Sedangkan mengenai perubahan Indole-3-acetonitrile menjadi IAA dengan bantuan enzym nitrilase prosesnya masih belum diketahui.

Pemecahan IAA dapat pula terjadi di dalam alam. Hal ini sebagai akibat adanya photo oksidasi dan enzyme. Dalam peristiwa photo oksidasi ini, pigmen pada tanaman akan menyerap cahaya kemudian energi ini dapat mengoksidasi IAA. Adapun pigmen yang berperan dalam photo oksidasi ialah Ribovlavin dan B-Carotene.

Ada hubungan yang berbanding terbalik antara aktivitas oksidasi IAA dengan kandungan IAA dalam tanaman. Dalam hal ini apabila kandungan IAA tinggi, maka aktivitas IAA oksidasi menjadi rendah, begitu pula sebaliknya. Di dalam daerah meristematic yang kadar auxinnya tinggi, ternyata aktivitas IAA oksidasinya rendah. Sedangkan di daerah perakaran yang kandungan auxinnya rendah, ternyata aktivitas IAA oksidasinya tinggi.

Proses lain yang menyebabkan inaktifnya IAA ialah karena adanya degradasi oleh photo oksidasi atau aktivitas suatu enzym.

Struktur Molekul Dan Aktivitas Auxin
Menurut Koeffli, Thimann dan went (1966), aktivitas auxsin ditentukan oleh :
Adanya struktur cincin yang tidak jenuh
Adanya rantai keasaman (acid chain)
Pemisahan karboksil grup (-COOH) dari struktur cincin
Adanya pengaturan ruangan antara struktur cincin dengan rantai keasaman.

Keempat persyaratan diatas merupakan faktor yang menentukan terhadap aktivitas auxin.

Tentang sifat dari rantai keasaman, Koeffli (1966) menerangkan bahwa posisi dan panjang rantai keasaman, berpengaruh terhadap aktivitas auxin. Rantai yang mempunyai karboksil grup dipisahkan oleh karbon atau karbon dan oksigen akan memberikan aktivitas yang normal.

Arti Auxin bagi Fisiologi Tanaman
Auxin sebagai salah satu hormon tumbuh bagi tanaman mempunyai peranan terhadap pertumbuhan dan perkembangan tanaman. Dilihat dari segi fisiologi, hormon tumbuh ini berpengaruh terhadap :
Pengembangan sel
Phototropisme
Geotropisme
Apical dominasi
Pertumbuhan akar (root initiation)
Parthenocarpy
Abisission
Pembentukan callus (callus formation) dan
Respirasi

a. Pengembangan sel
Dari hasil studi tentang pengaruh auxin terhadap perkembangan sel, menunjukan bahwa terdapat indikasi yaitu auxin dapat menaikan tekanan osmotik, meningkatkan permeabilitas sel terhadap air, menyebabkan pengurangan tekanan pada dinding sel, meningkatkan sintesis protein, meningkatkan plastisitas dan pengembangan dinding sel.
Dalam hubungannya dengan permeabilitas sel, kehadiran auxin meningkatkan difusi masuknya air ke dalam sel. Hal ini ditunjang oleh pendapat Cleland dan Brustrom (1961) bahwa auxin mendukung peningkatan permeabilitas masuknya air ke dalam sel.
b. Phototropisme
Suatu tanaman apabila disinari suatu cahaya, maka tanaman tersebut akan membengkok ke arah datangnya sinar. Membengkoknya tanaman tersebut adalah karena terjadinya pemanjangan sel pada bagian sel yang tidak tersinari lebih besar dibanding dengan sel yang ada pada bagian tanaman yang tersinari. Perbedaan rangsangan (respond) tanaman terhadap penyinaran dinamakan phototropisme.
Terjadinya phototropisme ini disebabkan karena tidak samanya penyebaran auxin di bagian tanaman yang tidak tersinari dengan bagian tanaman yang tersinari. Pada bagian tanaman yang tidak tersinari konsentrasi auxinnya lebih tinggi dibanding dengan bagian tanaman yang tersinari.
c. Geotropisme
Geotropisme adalah pengaruh gravitasi bumi terhadap pertumbuhan organ tanaman. Bila organ tanaman yang tumbuh berlawanan dengan gravitasi bumi, maka keadaan tersebut dinamakan geotropisme negatif. Contohnya seperti pertumbuhan batang sebagai organ tanaman, tumbuhnya kearah atas. Sedangkan geotropisme positif adalah organ-organ tanaman yang tumbuh kearah bawah sesuai dengan gravitasi bumi. Contohnya tumbuhnya akar sebagai organ tanaman ke arah bawah.
Keadaan auxin dalam proses geotropisme ini, apabila suatu tanaman (celeoptile) diletakan secara horizontal, maka akumulasi auxin akan berada di dagian bawah. Hal ini menunjukan adanya transportasi auxin ke arah bawah sebagai akibat dari pengaruh geotropisme. Untuk membuktikan pengaruh geotropisme terhadap akumulasi auxin, telah dibuktikan oleh Dolk pd tahun 1936 (dalam Wareing dan Phillips 1970). Dari hasil eksperimennya diperoleh petunjuk bahwa auxin yang terkumpul di bagian bawah memperlihatkan lebih banyak dibanding dengan bagian atas.
Sel-sel tanaman terdiri dari berbagai komponen bahan cair dan bahan padat. Dengan adanya gravitasi maka letak bahan yang bersifat cair akan berada di atas. Sedangkan bahan yang bersifat padat berada di bagian bawah. Bahan-bahan yang dipengaruhi gravitasi dinamakan statolith (misalnya pati) dan sel yang terpengaruh oleh gravitasi dinamakan statocyste (termasuk statolith).
d. Apical dominance
Di dalam pola pertumbuhan tanaman, pertumbuhan ujung batang yang dilengkapi dengan daun muda apabila mengalami hambatan, maka pertumbuhan tunas akan tumbuh ke arah samping yang dikenal dengan "tunas lateral" misalnya saja terjadi pemotongan pada ujung batang (pucuk), maka akan tumbuh tunas pada ketiak daun. Fenomena ini kita namakan "apical dominance"
Hubungan antara auxin dengan apical dominance pada suatu tanaman telah dibuktikan oleh Skoog dan Thimann (1975). Dalam eksperimennya, pucuk tanaman kacang (apical bud) dibuang, sebagai akibat treatment tersebut menyebabkan tumbuhnya tunas di ketiak daun. Dari ujung tanaman yang terpotong itu diletakan blok agar yang mengandung auxin. Dari perlakuan tersebut ternyata bahwa tidak terjadi pertumbuhan tunas pada ketiak daun. Hal ini membuktikan bahwa auxin yang ada di apical bud menghambat tumbuhnya tunas lateral.
e. Perpanjangan akar (root initiation)
dalam hubungannya dengan pertumbuhan akar, Luckwil (1956) telah melakukan suatu eksperimen dengan menggunakan zat kimia NAA (Naphthalene acetic acid), IAA (Indole acetid acid) dan IAN (Indole-3-acetonitrile) yang ditreatment pada kecambah kacang. Dari hasil eksperimennya diperoleh petunjuk bahwa ketiga jenis auxin ini mendorong pertumbuhan primordia akar. Perlu dikemukakan pula di sini, bahwa menurut Delvin (1975), pemberian konsentrasi IAA yang relatif tinggi pada akar, akan menyebabkan terhambatnya perpanjangan akar tetapi meningkatkan jumlah akar.
f. Pertumbuhan batang (stem growth)
Di dalam alam, hubungan antara auxin dengan pertumbuhan batang nyata erat sekali. Apabila ujung coleoptile dipotong, kemungkinan tanaman tersebut akan terhenti pertumbuhannya.
Di dalam tanaman, jaringan-jaringan muda terdapat pada apical meristem. Hubungannya dengan pertumbuhan tanaman peranan auxin sangat erat sekali. Dalam gambar diatas diperoleh petunjuk bahwa kandungan auxin yang paling tinggi terdapat pada pucuk yang paling rendah (basal).
g. Parthenocarpy
Di dalam alam sering kita menjumpai buah yang tidak berbiji. Seperti ; Anggur, Strawberry dan tanaman famili mentimun. Keadaan seperti ini disebabkan tidak dialaminya pembuahan pada perkembangan buah. Di dalam fisiologi, keadaan seperti ini dinamakan Parthenocarpy.
Di dalam proses Parthenocarpy, hormon auxin bertalian erat. Seperti dikemukakan massart (1902) hasil eksperimennya menunjukan bahwa pembengkakan dinding ovary bunga anggrek dapat distimulasi oleh tepung sari yang telah mati.
Pada tahun 1934 Yasuda berhasil menemukan penyebab Parthenocarpy dengan menggunakan ekstrak tepung sari pada bunga mentimun. Hasil analisisnya menunjukan bahwa ekstrak tersebut mengandung auxin. Selanjutnya pada tahun1936, Gustafon telah menemukan terjadinya Parthenocarpy dengan menggunakan IAA yang dicampur dengan lanolin pada stigma. Hasil penelitian Muir (1942) menunjukan pula bahwa kandungan auxin pada ovary yang mengalami pembuahan (pollination) meningkat bila dibandingkan dengan ovary yang tidak mengalami pembuahan.
h. Pertumbuhan buah (fruit growth)
Peningkatan volume buah ada hubungannya dengan pertumbuhan buah. Keadaan ini akibat hasil pembelahan sel dan/atau pengembangan sel. Menurut Weaver (1972), fase pembelahan sel biasanya overlap dengan pengembangan sel (cell enlargementh). Keadaan perkembangan ini selalu diikuti oleh peningkatan ukuran buah.
Mengenai hubungannya dengan auxin, diterangkan oleh Muller-Thurgau dalam tahun 1898 bahwa endosperma dan embrio di dalam biji menghasilkan auxin yang menstimulasi pertumbuhan endosperma. Suatu anggapan mengenai peranan auxin dalam pertumbuhan buah, telah dibuktikan oleh Crane dalam tahun 1949 dengan menggunakan 2,4, 5-T sebagai exogenous auxin yang diaplikasikan pada blak berry, anggur, strawberry dan jeruk. Hasil penelitiannya menunjukan bahwa pertumbuhan buah lebih cepat 60 hari dari fase normal rata-rata 120 hari.
i. Abscission
Abscission adalah suatu proses secara alami terjadinya pemisahan bagian/organ tanaman dari tanaman, seperti ; daun, bunga, buah atau batang.
Menurut Addicot (1964) maka dalam proses abscission ini faktor alami seperti ; dingin, panas, kekeringan, akan berpengaruh terhadap abscission. Dalam hubungannya dengan hormon tumbuh, maka mungkin hormon ini akan mendukung atau menghambat proses tersebut.
Di dalam proses abscission, akan terjadi perubahan-perubahan metabolisme dalam dinding sel dan perubahan secara kimia dari pectin dalam midle lamella.
Pembentukan lapisan abscission (abscission layer), kadang-kadang diikuti oleh susunan cell division proximal. Disini sel-sel baru akan berdiferensiasi ke dalam periderm dan membentuk suatu lapisan pelindung (Weaver, 1972).
Mengenai hubungan antara abscission dengan zat tumbuh auxin, Addicot et al (1955) mengemukakan sbb: Abscission akan terjadi apabila jumlah auxin yang ada di daerah proksimal (proximal region) sama atau lebih dari jumlah auxin yang terdapat di daerah distal (distal region). Tetapi apabila jumlah auxin yang berada di daerah distal lebih besar dari daerah proximal, maka tidak akan terjadi abscission. Dengan kata lain proses abscission ini akan terlambat.
Teori lain (Biggs dan Leopold 1957, 1958) menerangkan bahwa pengaruh auxin terhadap abscission ditentukan oleh konsentrasi auxin itu sendiri. Konsentrasi auxin yang tinggi akan menghambat terjadinya abscission, sedangkan auxin dengan konsentrasi rendah akan mempercepat terjadinya abscission.
Teori terakhir dikemukakan oleh Robinstein dan Leopold (1964) yang menerangkan bahwa respon abscission pada daun terhadap auxin dapat dibagi kedalam dua fase jika perlakuan auxin diberikan setelah daun terlepas. Fase pertama, auxin akan menghambat abscission, dan fase kedua auxin dengan konsentrasi yang sama akan mendukung terjadinya abscission.
j. Senescence
Menurut Alex Comport (1956) dalam Leopold (1961) "senescence" adalah suatu penurunan kemampuan tumbuh (viability) disertai dengan kenaikan vulnerability suatu organisme. Namun di dalam tanaman, istilah ini diartikan; menurunnya fase pertumbuhan (growth rate) dan kemampuan tumbuh (vigor) serta diikuti dengan kepekaan (susceptibility) terhadap tantangan lingkungan, penyakit atau perubahan fisik lainnya. Ciri dari fenomena ini selalu diikuti dengan kematian.
Di dalam alam, senescence terjadi pada daun, batang dan buah. Menurut Leopold (1961) ada empat bentuk senescence yang terjadi pada tanaman yaitu :
Semua organ tumbuh mengalami senescence (over-all senescence)
Senescence yang terjadi pada bagian atas (top senescence)
Senescence yang terjadi seluruh bagian daun dan buah (decideus senescence)
Senescence berkembang dari daun paling bawah menuju kearah atas (progresive senescence)
Ciri-ciri terjadinya senescence dapat ditemukan pada morfologi dan perubahan di dalam organ atau seluruh tubuh tanaman. Keadaan seperti ini diikuti oleh meningkatnya abscission serta daun dan buah berguguran dari batang pokok. Begitu pula pertumbuhan dan pigmentasi warna hijau berubah menjadi warna kuning, yang akhirnya buah dan daun terlepas dari batang pokok.

GIBBERELLIN
Gibberellin adalah jenis hormon tumbuh yang mula-mula diketemukan di Jepang oleh Kurosawa pada tahun 1926. Penelitian lanjutan dilakukan oleh Yabuta dan Hayashi (1939). Ia dapat mengisolasi crystalline material yang dapat menstimulasi pertumbuhan pada akar kecambah. Dalam tahun 1951, Stodola dkk melakukan penelitian terhadap substansi ini dan menghasilkan "Gibberelline A" dan "Gibberelline X". adapun hasil penelitian lanjutannya menghasilkan GA1, GA2, dan GA3.
Pada saat yang sama dilakukan pula penelitian di Laboratory of the Imperial Chemical Industries di Inggris sehingga menghasilkan GA3 (Cross, 1954 dalam Weaver 1972). Nama Gibberellin acid untuk zat tersebut telah disepakati oleh kelompok peneliti itu sehingga populer sampai sekarang.
Metabolisme gibberelline
Gibberellin adalah zat kimia yang dikelompokan kedalam terpinoid. Semua kelompok terpinoid terbentuk dari unit isoprene yang terdiri dari 5 atom karbon.

C
C - C - C
C
Unit Isoprene (5-C)
Unit-unit isoprene ini dapat bergabung sehingga menghasilkan monoterpene (C-10), Sesqueterpene (C-15), diterpene (C-20) dan triterpene (C-30).
Biosintesis gibberelline yang terdapat dalam jamur Gibberella Fujikuroi berproses dari Mevalonic acid sampai menjadi gibberellin. Di dalam proses biosintesis telah diketemukan zat penghambat (growth retardant) di dalam aktivitas ini. Beberapa contoh growth retardant yang menghambat biosintesis gibberelline pada tanaman antara lain Amo-1618 (2-isopropil-4-dimetil-kamine-5 metil phenil-4pipendine karboksilatmetil klorida) menghambat biosintesis gibberelline pada tanaman mentimun liar (Exhmocytis macrocarpa). Amo-1618 menghambat dalam proses perubahan dari Geranylgeranyl pyrophosphat ke Kaurene. Begitu pula growth retardant CCC (2-chloroethyl) trimethyl (-amonium chloride) memperlihatkan aktivitas yang sama dengan Amo-1618.

Struktur molekul dan aktivitas gibberelline
Gibberelline merupakan suatu compound (senyawa) yang mengandung "gibban skeleton".
Menurut Weaver (1972), perbedaan utama pada gibberelline adalah:
a. beberapa gibberelline mempunyai 19 buah atom karbon dan yang lainnya mempunyai 20 buah atom karbon.
b. Grup hidroksil berada dalam posisi 3 dan 13 (ent gibberellene numbering system)
Semua gibberelline dengan 19 atom karbon adalah monocarboxylic acid yang mengandung COOH grup pada posisi 7 dan mempunyai sebuah lactonering.
Di dalam alam, dijumpai pula beberapa senyawa yang di ekstrak dari tanaman. Senyawa tersebut tidak mengandung gibberelline atau gibberellane structure tetapi termasuk ke dalam gibberelline. Dari hasil penelitian Tamura dkk, ia menemukan suatu substansi dalam jamur Helminthosporium sativum yang dinamakan "helminthosporol" yang aktif dalam perpanjangan daun pada kecambah padi dan barley. Senyawa lain yang ditemukan tanpa gibban skeleton yaitu "Steviol", namun aktivitasnya seperti gibberelline.

O H OH

CO CH2

HO H COOH H CH3 H
GA3 (gibberellic acid)

Arti gibberellin bagi fisiologi tanaman
Gibberellin sebagai hormon tumbuh pada tanaman sangat berpengaruh pada sifat genetik (genetic dwarfism), pembuangan, penyinaran, partohenocarpy, mobilisasi karbohidrat selama perkecambahan (germination) dan aspek fisiologi kainnya. Gibberelline mempunyai peranan dalam mendukung perpanjangan sel (cell elongation), aktivitas kambium dan mendukung pembentukan RNA baru serta sintesa protein.
a. Genetic dwarfism
Genetic dwarfism adalah suatu gejala kerdil yang disebabkan oleh adanya mutasi. Gejala ini terlihat dari memendeknya internode. Terhadap Genetic dwarfism ini, gibberelline mampu merubah tanaman yang kerdil menjadi tinggi. Hal ini telah dibuktikan oleh Brian dan Hemming (1955). Dalam eksperimennya mereka telah memberi perlakuan penyemprotan gibberellic acid pada berbagai varietas kacang. Hasil dari eksperimen ini menunjukan bahwa gibberellic acid berpengaruh terhadap tanaman kacang yang kerdil dan menjadi tinggi.
Mengenai hubungannya dengan cell elengation, dikemukakan bahwa gibbberelline mendukung pengembangan dinding sel.
Menurut van Oberbeek (1966) penggunaan gibberelline akan mendukung pembentukan enzym protolictic yang akan membebaskan tryptophan sebagai asal bentuk dari auxin. Hal ini berarti bahwa kehadiran gibberelline tersebut akan meningkatkan kandungan auxin.
Mekanisme lain menerangkan bahwa gibberelline akan menstimulasi cell elengation, karena adanya hidrolisa pati yang dihasilkan dari gibberelline, akan mendukung terbentuknya a amilase. Sebagai akibat dari proses tersebut, maka konsentrasi gula meningkat yang mengakibatkan tekanan osmotik di dalam sel menjadi nai, sehingga ada kecenderungan sel tersebut berkembang.
b. Pembungaan (flowering)
Gibbereline sebagai salah satu hormon tumbuh pada tanaman, mempunyai peranan dalam pembungaan. Penelitian yang dilakukan Henny (1981) pada bungan spothiphyllum Mauna loa. Dengan memberikan perlakuan GA3 dengan dosis: 250, 500 dan 1000 mg/l. hasil eksperimen tsb dapat dilihat pada tabel dibawah.

Tabel 1. Pengaruh GA3 terhadap pembungaan Spathiphyllum Mauna Loa
GA3 (mg/l) Pembangunan (%) minggu setelah perlakuan
10 12 14 16 18 20
0 0 0 0 0 0 10
250 0 0 30 70 70 90
500 20 50 70 100 100 100
1000 0 60 90 100 100 100

c. Parthenocarpy dan fruit set
Seperti auxin, gibberelline pun berpengaruh terhadap Parthenocarpy. Hasil penelitian menunjukan bahwa gibberellic acid (GA3) lebih efektif dalam terjadinya Parthenocarpy dibanding dengan auxin yang dilakukan pada blueberry. Hasil eksperimen lain menunjukan pula bahwa GA3 dapat meningkatkan tandan buah (fruit set) dan hasil.
d. Peranan Gibberellin dalam pematangan buah (fruit ripening)
Pematangan (ripening) adalah suatu proses fisiologis, yaitu terjadinya perubahan dari kondisi yang tidak menguntungkan ke suatu kondisi yang menguntungkan, ditandai dengan perubahan tekstur, warna, rasa dan aroma.
Dalam proses pematangan ini, gibberelline mempunyai peran penting yaitu mampu mengundurkan pematangan (repening) dan pemasakan (maturing) suatu jenis buah.
Dari hasil penelitian menunjukan aplikasi gibberelline pada buah tomat dapat memperlambat pematangan buah, sedangkan gibberellic acid yang diterapkan pada buah pisang matang, ternyata pemasakannya dapat ditunda.
e. Mobilisasi bahan makanan selama fase perkecambahan (germination)
Biji cerealia terdiri dari embrio dan endosperm. Didalam endosperm terdapat masa pati (starch) yang dikelilingi oleh suatu lapisan "aleuron".. sedangkan embrio itu sendiri merupakan suatu bagian hidup yang suatu saat akan menjadi dewasa. Pertumbuhan embrio selama perkecambahan bergantung pada persiapan bahan makanan yang berada di dalam endosperm. Untuk keperluan kelangsungan hidup embrio maka terjadilah penguraian secara enzimatik yaitu terjadi perubahanpati menjadi gula yang selanjutnya ditranslokasikan ke embrio sebagai sumber energi untuk pertumbuhannya.
Dari hasil penelitian menunjukan bahwa gibberelline berperan penting dalam proses aktivitas amilase. Hal ini telah dibuktikan dengan menggunakan GA yang mengakibatkan aktivitas amilase miningkat.
Aktivitas enzym a amilase dan protease di dalam endosperm juga didukung oleh GA melalui de novo synthesis. Hal ini ada hubungannya dengan terbentuknya DNA baru yang kemudian menghasilkan RNA.
f. Stimulasi aktivitas cambium dan perkembangn xylem
Gibberelline mempunyai peranan dalam aktivitas kambium dan perkembangn xylem. Aplikasi GA3 dengan konsentrasi 100, 250, dan 500 ppm mendukung terjadinya diferensiasi xylem pada pucuk olive. Begitu pula dengan mengadakan aplikasi GA3 + IAA dengan konsentrasi masing-masing 250 dan 500 ppm, maka terjadi pengaruh sinergis pada xylem. Sedangkan aplikasi auxin saja tidak memberi pengaruh pada tanaman.
g. Dormansi
Dormansi adalah masa istirahat bagi suatu organ tanaman atau biji. Menurut Copeland (1976), dormansi adalah kemampuan biji untuk mengundurkan fase perkecambahannya hingga saat dan tempat itu menguntungkan untuk tumbuh.
Secara umum terjadinya dormansi adalah disebabkan oleh faktor luar dan faktor dalam. Faktor yang menyebabkan dormansi pada biji adalah sbb:
tidak sempurnanya embrio (rudimentery embriyo)
embrio yang belum matang secara fisikologis (physiological immature embriyo)
kulit biji yang tebal (tahan terhadap gerakan mekanis)
kulit biji impermeable ( impermeable seed coat)
adanya zat penghambat (inhibitor) untuk perkecambahan (presence of germination inhibitors).

Fase yang terjadi dalam dorminasi biji, menurut Amen (1968) ada empat fase yang harus dilalui :
fase induksi, ditandai dengan terjadinya penurunan jumlah hormon (hormon level)
fase tertundanya metabolisme (a period of partial metabolic arrest)
fase bertahannya embrio untuk berkecambah karena faktor lingkungan yang tidak menguntungkan.
Perkecambahan (germination), ditandai dengan meningkatnya hormon dan aktivitas enzym.
Peranan hormon tumbuh di dalam biji yang mengalami dorminasi telah dibahas oleh warner (1967) yang mengatakan bahwa GA3 dapat menstimulasi sintesis ribonukleas, amilase dan protoase di dalam endospem biji barley.

CYTOKININ
Cytokinin adalah salah satu zat pengatur tumbuh yang ditemukan pada tanaman. Zat pengatur tumbuh ini mempunyai peranan dalam proses pembelahan sel (cell division).
Cytokinin pertama kali ditemukan dalam kultur jaringan di Laboratories of Skoog and Strong University of Wisconsin. Material yang dipergunakan dalam penelitian ini adalah batang tembakau yang ditumbuhkan pada medium sintesis. Menurut Miller et al (1955, 1956), senyawa yang aktif adalah kinetin (6-furfuryl amino purine). Hasil penelitian menunjukan bahwa purine adenin sangat efektif.

Struktur kimia Cytokinin
Bentuk dasar dari cytokinin adalah adenin (6-amino purine). Adenin merupakan bentuk dasar yang menentukan terhadap aktifitas cytokinin. Di dalam senyawa cytokinin, panjang rantai dan hadirnya suatu double bond dalam rantai tersebut akan meningkatkan aktifitas zat pengatur tumbuh ini.
NH2

N

N H
Adenine (6-amino purine)

Arti Cytokinin bagi fisiologi tanaman
Penelitian pertumbuhan pith tissue culture dengan menggunakan cytokinin dan auxin dalam berbagai perbandingan telah dilakukan oleh Weier et al (1974). Dihasilkan bahwa apabila dalam perbandingan cytokinin lebih besar dari auxin, maka hal ini akan memperlihatkan stimulasi pertumbuhan tunas dan daun. Sebaliknya apabila cytokinin lebih rendah dari auxin, maka ini akan mengakibatkan stimulasi pada pertumbuhan akar. Sedangkan apabila perbandingan cytokinin dan auxin berimbang, maka pertumbuhan tunas, daun dan akar akan berimbang pula. Tetapi apabila konsentrasi cytokinin itu sedang dan konsentrasi auxin rendah, maka keadaan pertumbuhan tobacco pith culture tersebut akan berbentuk callus.
Sedangkan dalam pembelahan sel, dikemukakan bahwa IAA dan kinetin, apabila digunakan secara tersendiri akan menstimulasi sintesis DNA dalam tobacco pith culture. Dan menurut ahli tsb, kehadiran IAA dan kinetin ini diperlukan dalam proses mitosis walaupun IAA lebih dominan pada fase tersebut.

Interaksi Cytokinin, Gibberellin dan Auxin dalam perkembangan tanaman
Di dalam alam tidak satu unsurpun yang berdiri sendiri. Kesemuanya berinteraksi antara satu sama lainnya, sehingga merupakan suatu sistem. Begitu pula dengan zat pengatur tumbuh.
Pada tanaman, zat pengatur tumbuh auxin, gibberellin dan cytokinin bekerja tidak sendiri-sendiri, tetapi ketiga hormon tersebut bekerja secara berinteraksi yang dicirikan dalam perkembangan tanaman.

ETHYLENE
Ethylene adalah hormon tumbuh yang secara umum berlainan dengan Auxin, Gibberellin, dan Cytokinin. Dalam keadaan normal ethylene akan berbentuk gas dan struktur kimianya sangat sederhana sekali. Di alam ethilene akan berperan apabila terjadi perubahan secara fisiologis pada suatu tanaman. hormon ini akan berperan pada proses pematangan buah dalam fase climacteric.
Penelitian terhadap ethylene, pertama kali dilakukan oleh Neljubow (1901) dan Kriedermann (1975), hasilnya menunjukan gas ethylene dapat membuat perubahan pada akar tanaman. Hasil penelitian Zimmerman et al (1931) menunjukan bahwa ethylene dapat mendukung terjadinya abscission pada daun, namun menurut Rodriquez (1932), zat tersebut dapat mendukung proses pembungaan pada tanaman nanas.
Penelitian lain telah membuktikan tentang adanya kerja sama antara auxin dan ethylene dalam pembengkakan (swelling) dan perakaran dengan cara mengaplikasikan auxin pada jaringan setelah ethylene berperan. Hasil penelitian menunjukan bahwa kehadiran auxin dapat menstimulasi produksi ethylene.

Struktur kimia dan Biosintesis ethylene
Struktur kimia ethylene sangat sederhana yaitu terdiri dari 2 atom karbon dan 4 atom hidrogen seperti gambar di bawah ini :
H H
C=C
H H
Ethylene

Biosintesis ethylene terjadi di dalam jaringan tanaman yaitu terjadi perubahan dari asam amino methionine atas bantuan cahaya dan FMN (Flavin Mono Nucleotide) menjadi Methionel. Senyawa tersebut mengalami perubahan atas bantuan cahaya dan FMN menjadi ethykene, methyl disulphide, formic acid.

Peranan ethylene dalam fisiologi tanaman
Di dalam proses fisiologis, ethylene mempunyai peranan penting. Wereing dan Phillips (1970) telah mengelompokan pengaruh ethylene dalam fisiologi tanaman sbb:
mendukung respirasi climacteric dan pematangan buah
mendukung epinasti
menghambat perpanjangan batang (elengation growth) dan akar pada beberapa species tanaman walaupun ethylene ini dapat menstimulasi perpanjangan batang, coleoptyle dan mesocotyle pada tanaman tertentu, misalnya Colletriche dan padi.
Menstimulasi perkecambahan
Menstimulasi pertumbuhan secara isodiametrical lebih besar dibandingkan dengan pertumbuhan secara longitudinal
Mendukung terbentuknya bulu-bulu akar
Mendukung terjadinya abscission pada daun
h. Mendukung proses pembungaan pada nanas
Mendukung adanya flower fading dalam persarian anggrek
Menghambat transportasi auxin secara basipetal dan lateral
Mekanisme timbal balik secara teratur dengan adanya auxin yaitu konsentrasi auxin yang tinggi menyebabkan terbentuknya ethylene. Tetapi kehadiran ethylene menyebabkan rendahnya konsentrasi auxin di dalam jaringan.
Hubungannya dengan konsentrasi auxin, hormon tumbuh ini menentukan pembentukan protein yang diperlukan dalam aktifitas pertumbuhan, sedangkan rendahnya konsentrasi auxin, akan mendukung protein yang akan mengkatalisasi sintesis ethylene dan precursor.

Peranan ethylene dalam proses pematangan buah
Harsen (1967) dalam Dilley (1969) telah mempelajari hubungan antara ethylene dengan tingkat kematangan pada buah pear. Ia mengemukakan bahwa pematangan ini menjadi suatu sequential dalam proses kesinambungan kehidupan buah. Menurut konsep tsb, ethylene berpebgaruh terhadap beberapa yang mengontrol pola normal dari proses pematangan.
Menurut Frenkel et al (1968), sintesa protein diperlukan pada tingkat pematangan yang normal. Protein disintesa secepatnya dalam proses pematangan. Dari hasil eksperimen terhadap buah pear, memperlihatkan bahwa pematangan buah dan sintesa protein terhambat sebagai akibat perlakuan cycloheximide pada permulaan fase climacteric. Setelah cycloheximide hilang, ternyata sintesis ethylene tidak mengalami hambatan.
Di dalam proses pematangan, ribonucleic acid synthesis pun diperlukan. Dalam eksperimen menggunakan buah pear, buah tersebut ditreated, dengan actinomysin D pada tingkat pre climacteric. Dari hasil eksperimen ini diperoleh petunjuk bahwa actinomysin D menghambat terbentuknya DNA yang bergantung pada RNA sintesis.
Imascshi et al (1968) mengemukakan bahwa ethylele mendukung peningkatan aktivitas metabolisme dalam jaringan akar ubi jalar. Ethylene yang berkonsentrasi 0,1 ppm, menstimulasi perkembangan peroxidase dan phenyl alanine ammonialyase. Penelitian lain mengemukakan bahwa perlakuan ethylene pada kecambah kapas menstimulasi aktivitas peroksida dan IAA oksida.

Interaksi ethylene dengan auxin dan kinetin
Dari hasil penelitian terhadap tanaman kacang (pea), menunjukan bahwa pembentukan ethylene lebih tampak pada jaringan meristem tempat auxin dihasilkan. Disini IAA mengontrol pembentukan ethylene dalam perpanjangan batang pea. Kehadiran kinetin dalam pertumbuhan tunas lateral dapat mengatasi penghambatan yang diakibatkan oleh IAA. Hasil penelitian lain menunjukan bahwa adanya penghambatan transportasi auxin oleh endogenous ethylene yang menyebabkan terjadinya abscission pada daun.

INHIBITORS
Yang dimaksud dengan istilah inhibitor adalah zat yang menghambat pertumbuhan pada tanaman, sering didapat pada proses perkecambahan, pertumbuhan pucuk atau dalam dormansi.
Di dalam tanaman, inhibitor menyebar disetiap organ tubuh tanaman tergantung dari jenis inhibitor itu sendiri. Menurut weaver (1972), beberapa jenis inhibitor adalah merupakan bentuk phenyl compound termasuk phenol, benzoic acid, cinamic acid dan coffeic acid. Gallic acid dan shikimic acid merupakan turunan dari benzoic acid. Selanjutnya ia mengemukakan pula bahwa gallic acid dapat diketemukan pada buah yang matang, sedangkan ferulic acid dan p-coumaric acid merupakan ko faktor untuk IAA oksida.
Di dalam alam, abscisic acid dapat dijumpai pada daun, batang, rizoma, ubi (tuber), tunas (bud), tepung sari, buah, embrio, endosperm, ataupun kulit biji (seed coat) misalnya pada tanaman kentang, kacang, apel, adpokat rose dan kelapa.
Plant growth retardant adalah inhibitor yang berperan dalam menghambat aktivitas apical meristematic. Zat kimia yang dikelompokan dalam growth retardant adalah : Amo-1618, Phosfon-D, CCC (cycocel), SADH (succinic acid-2,2-dimethyl hyrdazide) dan Morphactins (methyl-2-chloro-9-hydroxy fluorene-9-carboxylate/IT 3456 dan n-butyl-9-hydroxyfluerene-9-carboxylate/IT 3233).

Peranan inhibitor di dalam tanaman
a. Abscissic acid
Di dalam tanaman, Abscissic acid (ABA) menyebar di dalam jaringan. Inhibitor ini mempunyai fungsi atau peranan yang berlawanan dengan zat pengatur tumbuh: auxin, gibberellin, dan cytokinin.
b. Plant growth retardant
Plant growth retardant adalah inhibitor yang berlawanan dengan kegiatan gibbberellin pada perpanjangan batang. Hal ini terbukti dari hasil penelitian Lang dkk dengan menggunakan CCC dan Amo-1618 pada jamur fusarium moniliforme dan tanaman derajat tinggi. Ternyata bahwa sintesis gibberellin diblokir sehingga gibberellin tersebut tidak berpengaruh. Sedangkan SADH menghambat diamin oksida (yang berperan dalam perubahan tryptamine menjadi IAA).
Secara garis besar ternyata inhibitor ini menghambat aktivitas auxin, gibberellin dan cytokinin. ABA sebagai salah satu jenis inhibitor mendukung dormansi, abscission dan senscence. Sedangkan SADH, CCC, Phosfon-D dan Amo-1618 menghambat perpanjangan batang (cell elongation). Growth retardant ini aktifasinya berlawanan dengan gibberellin.
MH (Maleic Hydrazide) sering digunakan sebagai herbisida dalam konsentrasi yang tinggi. Aktifitas MH ini menghambat aktifitas meristematic, sehingga menghambat perpanjangan batang. Begitu pula morphactin dan turunannya, dengan menggunakan konsentrasi yang tinggi, dapat dipergunakan sebagai weed killer. Peranan bahan kimia ini adalah menghambat perpanjangan batang dan berfungsi pula untuk memecahkan auxillary bud.